Volume 6, Issue 2, December 2020, Page: 16-23
Co-crystallization of Oxalate Salts of Monoprotonated Amines with a Double Sn-Ph Bond Cleavage
Mouhamadou Birame Diop, Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal
Gorgui Awa Seck, Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal
Modou Sarr, Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal
Libasse Diop, Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal
Allen G. Oliver, Department of Chemistry and Biochemistry, University of Notre Dame, Nieuwland, Science Hall, Notre Dame, USA
Received: Jul. 11, 2020;       Accepted: Jul. 27, 2020;       Published: Aug. 25, 2020
DOI: 10.11648/j.ajhc.20200602.11      View  108      Downloads  21
Abstract
Two oxalate compounds [(C4H7N2)3][Sb(C2O4)3] (1) and [(Et3NH)][SnPhCl(C2O4)2] (2), have been isolated and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/c with a=13.3944 (6) Å, b=11.3554 (5) Å, c=16.3314 (7) Å, β=107.206 (1), V=2372.82 (18) Å3 and Z=4. Compound 2 crystallizes in the monoclinic system, space group P21/n with a=8.6903 (4) Å, b=15.3844 (8) Å, c=20.3144 (10) Å, β=100.869 (2), V=2667.2 (2) Å3 and Z=4. The complex-anion [Sb(O2CCO2)3]3- of the compound 1 adopts a distorted pentagonal pyramidal arrangement with monochelating oxalates. The asymmetric unit of 1 consists of three 2-methyl-1H-imidazolium cations, C4H7N2+, three oxalate anions, C2O42-, and one antimony (III) ion, Sb3+. From a supramolecular point of view, in 1 complex-anions are connected by cations through N-H•••(O,O) and N-H•••O hydrogen bonds involving the two oxalates of the basal plane into sheets which are then connected via the remaining oxalate and cations through N-H•••O hydrogen bonds to give rise to a three-dimensional structure. The complex-anion of 2 is comprised of a tin centre linked to a chlorine atom and a phenyl group, and cis-chelated by two oxalates in a distorted octahedral fashion. Each triethylammonium cation is connected to the complex-anion through bifurcated N-H•••(O,O) hydrogen bonds. These interactions lead to a discrete structure. A double Sn-C bond cleavage has occurred during the process of the formation of the compound 2. In both complounds 1 and 2, one cation exhibits some positional disorder.
Keywords
Oxalate, Antimony (III), Tin(IV), 2-Methylimidazolium, Triethylammonium, Sn-C Cleavage, X-ray Crystal Crystallography
To cite this article
Mouhamadou Birame Diop, Gorgui Awa Seck, Modou Sarr, Libasse Diop, Allen G. Oliver, Co-crystallization of Oxalate Salts of Monoprotonated Amines with a Double Sn-Ph Bond Cleavage, American Journal of Heterocyclic Chemistry. Vol. 6, No. 2, 2020, pp. 16-23. doi: 10.11648/j.ajhc.20200602.11
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Wan, K.-K., Yu, J.-H., Xu, J.-Q. (2019). 4,5-Diamino-1,2-dihydropyridazine-3,6-dione-based layered Zn2+ coordination polymer and sensing properties on 2,4,6-trinitrophenol and Cr2O72-. Journal of Solid State Chemistry, 270, 212-218. doi: 10.1016/j.jssc.2018.11.020.
[2]
Zhang, L.-Y., Lu, L.-P., Zhu, M.-L. (2020). Two Cadmium(II) Complexes Constructed by 2-(3-(Pyridin-2-yl)-1H-pyrazol-1-yl)benzoate: Crystal Structures, Luminescent Properties and Hirshfeld Surface Analyses. Journal of Chemical Crystallography, 50, 122-132. doi: 10.1007/s10870-019-00781-w.
[3]
Wang, J., Zhong, Y., Bai, C., Guan, Y., Pan, Y., Hu, H.-M. (2020). Series of coordination polymers with multifunctional properties for nitroaromatic compounds and CuII sensing. Journal of Solid State Chemistry, 288, 121381. doi: 10.1016/j.jssc.2020.121381.
[4]
Escande, P., Tichit, D., Ducourant, B., Fourcarde, R., Macherpa, G. (1978). Interaction between the lone electronic pair and π bond in a nonsymmetric system: Crystal structure of sodium oxalate-antimony trifluoride (Na2C2O4(SbF3)2). Annale de Chimie (Paris), 3, 117-124. CSD Refcode: SBFOXS.
[5]
Coudreau-Ducourant, D., Ducourant, B., Fourcarde, R., Macherpa, G. (1981). New complex of antimony oxide fluoride and oxalate: Crystal structure of (NH4)4H2(C2O4)3(SbOF)2.2H2O. Zeitschrift für Anorganische und Allgemeine Chemie., 476, 229-236. doi: 10.1002/zaac.19814760527.
[6]
Udovenko, A. A., Sigula, N. I., Samarets, L. V., Davidovich, R. L. (1981). Crystal structure of ammonium trioxalatotetrefluorodiantimonate(III) dehydrate. Russian Journal of Coordination Chemistry (koordinatsionnaya khimiya), 7, 450-454. CSD Refcode: FLOXSB.
[7]
Udovenko, A. A., Sigula, N. I., Davidovich, R. L. (1981). Crystal structure of cesium dioxalatotetrefluorodiantimonate(III) monohydrate. Russian Journal of Coordination Chemistry (koordinatsionnaya khimiya), 7, 1708-1712. CSD Refcode: BAYLUI.
[8]
Davidovich, R. L., Zemnukhova, L. A., Udovenko, A. A., Sigula, N. I. (1983). Synthesis and structure of rubidium oxalatofluorodiantimonates(III). Russian Journal of Coordination Chemistry (koordinatsionnaya khimiya), 9, 787-792. CSD Refcodes: CANRIS, CANROY and CANRUE.
[9]
Poor, M. C., Russel, D. R. (1971). Crystal structure of the trisoxalatoantimonate(III) ion: Sterically-active lone pair in six-coordination. Journal of the Chemical Society D: Chemical Communications, 18-19. doi: 10.1039/c29710000018.
[10]
Song, X., Zhong, G., Xie, Q., Eng, G. (2005). An unexpected Sn–Ph cleavage by mercaptoacetic acid. Inorganic Chemistry Communications, 8 (8), 725-728. doi: 10.1016/j.inoche.2005.05.006.
[11]
Chandrasekhar, V., Gopal, K., Sasikumar, P., Thirumoorthi, R. (2005). Organooxotin assemblies from SnC bond cleavage reactions. Coordination Chemistry Reviews, 249 (17-18), 1745-1765. doi: 10.1016/j.ccr.2005.03.028.
[12]
Carraher, C. E., Roner, M. R., Frank, J., Slawek, P., Mosca, F., Shahi, K., Moric-Johnson, A., Miller, L. (2019). Organotin Polymers for the Control of Pancreatic Cancer. OBM Hepatology and Gastroenterology, 3 (2): 10. doi: 10.21926/obm.hg.1902019.
[13]
Carraher, C. E., Roner, M., Shahi, K., Battin, A., Barot, G., Arnold, T. (2014). Organotin Polymers As Chemotherapeutic Agents: Breast and Pancreatic Cancers. Journal of Polymer Materials, 31 (1), 1-14.
[14]
Barot, G., Roner, M. R., Naoshima, Y., Nagao, K., Shahi, K., Carraher, C. E. (2009). Synthesis, Structural Characterization, and Preliminary Biological Characterization of Organotin Polyethers Derived from Hydroquinone and Substituted Hydroquinones. Journal of Inorganic and Organometallic Polymers and Materials, 19 (1), 12-27. doi: 10.1007/s10904-008-9220-1.
[15]
Roner, M. R., Shahi, K. R., Barot, G., Battin, A., Carraher, C. E. (2009). Preliminary Results for the Inhibition of Pancreatic Cancer Cells by Organotin Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19 (3), 410-414. doi: 10.1007/s10904-009-9275-7.
[16]
Carraher, C., Roner, M., Lynch, M., Moric-Johnson, A., Miller, L., Slawek, P., Mosca, F., Frank, J. (2018). Organotin poly(ester ethers) from salicylic acid and their ability to inhibit human cancer cell lines. Journal of Clinical Research in Oncology, 1 (1), 1-11.
[17]
Carraher Jr, C., Roner, M. (2014). Organotin polymers as anticancer and antiviral agents. Journal of Organometallic Chemistry, 751, 67-82. doi: 10.1016/j.jorganchem.2013.05.033
[18]
Iqbal, M., Ali, S., Haider, A., Khalid, N. (2017). Therapeutic properties of organotin complexes with reference to their structural and environmental features. Reviews in Inorganic Chemistry, 37 (2), 51.70. doi: 10.1515/revic-2016-0005.
[19]
Hussain, S., Ali, S., Shahzadi, S., Riaz, M., Nazir, K., Arshad M. N., Asiri, A. M. (2020). Synthesis, Structural and Biological Studies of Organotin(IV) Complexes with N-(Dithiocarboxy) Sarcosine. Arabian Journal for Science and Engineering, 45, 4785-4795. doi: 10.1007/s13369-020-04496-5.
[20]
Hadi, A., Jawad, K., Ahmed, D. S., Yousif, E. (2019). Synthesis and Biological Activities of Organotin (IV) Carboxylates: A Review. Systematic Reviews in Pharmacy, 10 (1), 26-31. doi: 10.5530/srp.2019.1.5.
[21]
Javed, F., Sirajuddin, M., Ali, S., Khalid, N., Tahir, M. N., Shah, N. A., Rasheed, Z., Khan, M. R. (2016). Organotin (IV) derivatives of o-isobutyl carbonodithioate: synthesis, spectroscopic characterization, X-ray structure, HOMO/LUMO and in vitro biological activities. Polyhedron, 104, 80-90. doi: 10.1016/j.poly.2015.11.041.
[22]
Meneghetti, M. R., Meneghetti S. M. P. (2015). Sn(iv)-based organometallics as catalysts for the production of fatty acid alkyl esters. Catalysis Science & Technology, 5, 765-771. doi: 10.1039/C4CY01535E.
[23]
Mao, W., Bao, K., Feng, Y., Wang, Q., Li, J., Fan, Z. (2015). Synthesis, crystal structure, and fungicidal activity of trioriganotin(IV) 1-methyl-1H-imidazole-4-carboxylates. Main Group Metal Chemistry, 38 (1-2), 27-30. doi: 10.1515/mgmc-2014-0040.
[24]
Kagan, C. R., Breen, T. L., Kosbar, L. L. (2001). Pattering organic-inorganic thin-film transistors using microcontact printed templates. Applied Physics Letters, 79 (21), 3536-3538. doi: 10.1063/1.1420576
[25]
Yamada, T., Sadakiyo, M., Kitagawa, H. (2009). High Proton Conductivity of One-Dimensional Ferrous Oxalate Dihydrate. Journal of the American Chemical Society, 131 (9), 3144-3145. doi: 10.1021/ja808681m.
[26]
Tang, L., Park, J., Kim, H.-J., Kim, Y., Kim, S. J., Chin, J., Kim, K. M. (2008). Tight Binding and Fluorescent Sensing of Oxalate in Water. Journal of the American Chemical Society, 130 (38), 12606-12607. doi: 10.1021/ja804753n.
[27]
Zhang, B., Baker, P. J., Zhang, Y., Wang, D., Wang, Z., Su, S., Zhu, D., Pratt, F. L. (2018). Quantum Spin Liquid from a Three-Dimensional Copper-Oxalate Framework. Journal of the American Chemical Society, 140 (1), 122-125. doi: 10.1021/jacs.7b11179.
[28]
Clemente-Leon, M., Coronado, E., Marti-Gastaldo, C., Romero, F. M. (2011). Multifunctionality in hybrid magnetic materials based on bimetallic oxalate complexes. Chemical Society Reviews, 40, 473-497. doi: 10.1039/C0CS00111B.
[29]
Yamada, M. G., Fujita, H., Oshikawa, M. (2017). Designing Kitaev Spin Liquids in Metal-Organic Frameworks. Physical Review Letters, 119 (5), 057202. doi: 10.1103/PhysRevLett.119.057202.
[30]
Gueye, O., Qamar, H., Diop, L., Diop, C. A., Russo, U. (1993). A new synthetic route for mono- and poly-tin(IV) oxalate adducts: IR and Mössbauer study. Polyhedron, 12 (10), 1245-1249. doi: 10.1016/S0277-5387(00)88218-2.
[31]
Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C., Okio, K. Y. A. (2003). Crystallographic report: Bis(triphenyltin) oxalate. Applied Organometellic Chemistry, 17 (11), 881-882. doi: 10.1002/aoc.536.
[32]
Sow, Y., Diop, L., Kociock-Köhn, G., Molloy, K. C. (2010). X-ray crystal structure of (nPr2NH2)2C2O4.SnCl4. Main Group Metal Chemistry, 33 (4-5), 205-208. doi: 10.1515/MGMC.2010.33.4-5.205.
[33]
Sarr, M., Diasse-Sarr, A., Diallo, W., Plasseraud, L., Cattey, H. (2013). Bis(cyclo­hexyl­ammonium) tetra­chlorido­(oxalato)stannate(IV). Acta Crystallographica Section E, 69 (8), m473-m474. doi: 10.1107/S1600536813019284.
[34]
Diop, M. B., Diop, L., Plasseraud, L., Maris, T. (2015). Crystal structure of 2-methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O’)stannate(IV). Acta Crystallographica Section E, 71 (5), 520-522. doi: 10.1107/S2056989015005988.
[35]
Diop, M. B., Diop, L., Plasseraud, L., Cattey, H. (2016). Triorganotin carboxylates – synthesis and crystal structure of 2-methyl-1H-imidazol-3-ium catena-O,O′-oxalatotriphenylstannate. Main Group Metal Chemistry, 39 (3-4), 119-123. doi: 10.1515/mgmc-2016-0016.
[36]
Apex3, Crystallographic Software, Suite, Bruker AXS Inc., Madison, Wisconsin (USA) 2015.
[37]
Saint (version 8.34A-2013), Area Detector Integration Software, Bruker AXS Inc., Madison, Wisconsin (USA), 2013.
[38]
Krause, L., Herbst-Irmer, R., Sheldrick, G. M., Stalke, D. (2015). Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystalloraphy, 48 (1), 3-10. doi: 10.1107/S1600576714022985.
[39]
Sheldrick, G. M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71 (1), 3-8. doi: 10.1107/S2053273314026370.
[40]
Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71 (1), 3-8. doi: 10.1107/S2053229614024218.
[41]
Spek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D, 65 (2), 148-155. doi: 10.1107/S090744490804362X.
[42]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. (2008). Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41 (2), 466-470. doi: 10.1107/S0021889807067908.
[43]
Kaduk, J. A., Toft, M. A., Golab, J. T. (2010). Crystal structure of antimony oxalate hydroxide, Sb(C2O4)OH. Powder Diffraction, 25 (1), 19-24. doi: 10.1154/1.3308616.
[44]
Diop, M. B., Diop, L., Plasseraud, L., Maris, T. (2016). Crystal structure of bis(2-methyl-1H-imidazol-3-ium) dihydroxidobis(oxalato-κ2O1,O2) stannate(IV) monohydrate. Acta Crystallographica Section E, 72 (3), 355-357. doi: 10.1107/S2056989016002061.
[45]
Gueye, N., Diop, L., Stoeckli-Evans, H. (2014). Tetra­kis(di­propyl­ammonium) tetra­kis(oxa­lato-κ2O1,O2)stannate(IV) mono­hydrate: a complex with an eight-coordinate SnIV atom. Acta Crystallographica Section E, 70 (2), m49-m50. doi: 10.1107/S160053681303496X.
[46]
B., Sarr, Diop, C. A. K., Sidibe, M., Rousselin, Y. (2018). Crystal structure of bis­(diisopropylammonium) cis-diiodido­bis­(oxolato-κ2O1,O2)stannate(IV). Acta Crystallographica Section E, 74 (4), 502-504. doi: 10.1107/S2056989018003602.
[47]
B., Sarr, Mbaye, A., Diop, C. A. K., Sidibe, M., Rousselin, Y. (2019). Synthesis, structure determination and characterization by UV–Vis and IR spectroscopy of bis­(diiso­propyl­ammonium) cis-di­chlorido­bis(oxolato-κ2O1,O2)stannate(IV). Acta Crystallographica Section E, 75 (6), 742-745. doi: 10.1107/S2056989019006030.
[48]
Gueye, N., Diop, L., Molloy, K. C., Kociok-Köhn, G. (2010). Bis(dicyclo­hexyl­ammonium) μ-oxalato-κ4O1,O2: O1′,O2′-bis­ [aqua­(oxolato-κ2O1,O2)diphenyl­stannate(IV)], Acta Crystallographica Section E, 66 (12), m1645-m1646. doi: 10.1107/S1600536810046738.
Browse journals by subject